2012厦门秋季公务员考试笔试备考:数量关系习题精解(9)
2012-06-19 15:18 福建公务员考试网 http://xiamen.huatu.com/ 作者:厦门华图 来源:厦门华图
例1. 8人排成一队
(1)甲乙必须相邻
(2)甲乙不相邻
(3)甲乙必须相邻且与丙不相邻
(4)甲乙必须相邻,丙丁必须相邻
(5)甲乙不相邻,丙丁不相邻
分析:
(1)甲乙必须相邻 ,就是把甲乙 捆绑(甲乙可交換) 和7人排列 P(7.7)*2
(2)甲乙不相邻 P(8.8)-P(7.7)*2
(3)甲乙必须相邻且与丙不相邻
先求甲乙必须相邻且与丙相邻 P(6.6)*2*2
甲乙必须相邻且与丙不相邻 P(7.7)*2-P(6.6)*2*2
(4)甲乙必须相邻,丙丁必须相邻 P(6.6)*2*2
(5)甲乙不相邻,丙丁不相邻
P(8.8)-P(7.7)*2*2+P(6.6)*2*2
例2. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?
分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即P(5.2).
例3. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?
分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。
∴ 共C(6.3)=20种方法。
例4. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?
分析:
三个相同的红球,有4個空,两个不同的白球, 可以一個一個插,也可以2個一起插、
P(4.2)+P(4.1)*2=20
更多内容请继续关注 福建人事考试网 公务员考试 公务员考试网 公务员考试培训课程
(责任编辑:厦门华图)