突破数字推理的“三把金钥匙”
2011-06-21 13:47 福建公务员考试网 http://xiamen.huatu.com/ 作者:厦门华图 来源:未知数字推理虽然在行政职业能力测试这门考试每次只有5道或10道,但这几道题目在整张试卷中占据的位置与地位是非常重要的。
首先,从时间上来考虑,行政职业能力测试平均做每道题的时间(包括涂卡)在50秒左右,时间是非常紧张的。如果能在数字推理的每道题目上节省半分钟,那么整个考试就可以节省出5分钟,5分钟对于行政职业能力测试来说,可以说是非常珍贵的时间了。
其次,从心理上来考虑,如果能在数字推理上一马平川,又对又快的顺利解决掉数字推理,那么考生在做后面的题目时,心理上是会放松的,而且答题也会越来越自信;相反,如果在数字推理上卡住了,有题目没做出来,那么在后边的答题中肯定会惦记着前面的题目,从而导致考试的紧张情绪,自己的信心也会被削减,甚至由于分神导致一些低级的失误,例如漏答题,涂错卡等等。因此,数字推理不论从应考的战术,还是应考的战略上来讲都是非常重要的。
在考场上快速突破数字推理题目的“三把金钥匙”:
第一把金钥匙:看走向。拿到题目以后,用2秒钟迅速判断数列中各项的走向,例如:是越来越大,还是越来越小,还是有起有落。通过判断走向,找出该题的突破口。例如下面这道北京市面向2007应届生行测的真题:
14 ,6 ,2 ,0 ,( )
A.-2
B. -1
C. 0
D. 1
我们看到,题目中的一直的四个数字是越来越小的,也就是走向是递减的,是一致的。对于这类走向一致的数列,新天地公务员数学老师通常的做法是从相邻两项的差或比例入手,很明显,这道题目不能从比例入手(因为14/6不是整数),那么,我们就作差,相邻两项的差为8,4,2成等比数列,因此,0减去所求项应等于1,故所求项等于-1,故选B。利用数列的走向,可以迅速判断出应该采取的方法,所以,走向就是旗帜,走向就是解题的命脉。
第二把金钥匙,利用特殊数字。一些数字推理题目中出现的数距离一些特殊的数字非常近,这里所指的特殊数字包括平方数,立方数,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。例如下面这道2007年国家公务员考试行测的真题:
0 ,9 ,26 ,65 ,124 ,( )
A. 165
B. 193
C. 217
D. 239
当我们看到26,65,124时,应该自然的本能的联想到27,64,125,因为27,64和125都是整数的方次,27是3的立方,64是4的立方也是8的平方也是2的6次方,125是5的立方,很明显,我们应该把64看作4的立方,也就是该数列每一项加1或减1以后,成为一组特殊的数字,他们是整数的立方,具体的说,就是:0+1为1的立方,9-1为2的立方,26+1为3的立方,65-1为4的立方,124+1为5的立方,因此,所求项减1应等于6的立方,故所求项为217,因此该题选C。从这道题目,新天地公务员老师提醒广大考生要在考场上做到“作对作快”,必须在备考时进行知识的积累和储备,具体到数字推理部分,就是要在考前将1到20的平方:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400;1到10的立方:1,8,27,64,125,216,343,512,729,1000;2的1次方到10次方:2,4,8,16,32,64,128,256,512,1024;5的1次方到5次方:5,25,125,625,3125背熟,当数字推理中出现以上这些数字周围的数字时,要联想到这些特殊的数,从而找出规律,例如,看到217就要想到216。
第三把金钥匙:九九乘法口诀。九九乘法口诀是我国五千年文明的精华,是我们的国粹,作为选拔为国家公务人员的考试,当然要求应试者对我们的国粹有深刻的认识。当在做数字推理题目时,新天地公务员老师提醒大家要依次读已知的数的时候,应时刻想着乘法口诀,看看题目中的已给的数字是否在乘法口诀有关系,因为九九乘法口诀中所涉及的不仅是简单的乘法口诀,其中蕴涵着大量100以内整数的有关整除的信息,因此,很多时候,我们可以仅仅利用九九乘法口诀就找出已给数字的规律。例如下面这道2005年国家公务员考试B类行测考试的真题:
1 ,1 ,8 ,16 ,7 ,21, 4 ,16 ,2 ,( )
A. 10
B. 20
C. 30
D. 40
当我们看到8,16,7,21,4,16时,如果能意识到它们在九九乘法口诀中的地位,那么我们也就找到了解这道题的突破口了:1/1=1,16/8=2,21/7=3,16/4=4,因此所求项除以2应等于5,故所求项为10,故选A。因此,在做数字推理题时,应该一边读题,一边考虑这些已知的数是否在乘法口诀中出现过,以及它们之间的联系。
以上介绍的“三把金钥匙”是在公务员考试中经常使用的,理解掌握了以后,就能够快速解决数字推理的题目,达到“做对做快”的目的。